45 research outputs found

    On the Continuous CNN Problem

    Full text link
    In the (discrete) CNN problem, online requests appear as points in R2\mathbb{R}^2. Each request must be served before the next one is revealed. We have a server that can serve a request simply by aligning either its xx or yy coordinate with the request. The goal of the online algorithm is to minimize the total L1L_1 distance traveled by the server to serve all the requests. The best known competitive ratio for the discrete version is 879 (due to Sitters and Stougie). We study the continuous version, in which, the request can move continuously in R2\mathbb{R}^2 and the server must continuously serve the request. A simple adversarial argument shows that the lower bound on the competitive ratio of any online algorithm for the continuous CNN problem is 3. Our main contribution is an online algorithm with competitive ratio 3+23β‰ˆ6.4643+2 \sqrt{3} \approx 6.464. Our analysis is tight. The continuous version generalizes the discrete orthogonal CNN problem, in which every request must be xx or yy aligned with the previous request. Therefore, Our result improves upon the previous best competitive ratio of 9 (due to Iwama and Yonezawa)

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model

    Tight Lower Bounds for Multiplicative Weights Algorithmic Families

    Get PDF
    We study the fundamental problem of prediction with expert advice and develop regret lower bounds for a large family of algorithms for this problem. We develop simple adversarial primitives, that lend themselves to various combinations leading to sharp lower bounds for many algorithmic families. We use these primitives to show that the classic Multiplicative Weights Algorithm (MWA) has a regret of Tln⁑k2\sqrt{\frac{T \ln k}{2}}, there by completely closing the gap between upper and lower bounds. We further show a regret lower bound of 23Tln⁑k2\frac{2}{3}\sqrt{\frac{T\ln k}{2}} for a much more general family of algorithms than MWA, where the learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over time. We also use our primitives to construct adversaries in the geometric horizon setting for MWA to precisely characterize the regret at 0.391δ\frac{0.391}{\sqrt{\delta}} for the case of 22 experts and a lower bound of 12ln⁑k2δ\frac{1}{2}\sqrt{\frac{\ln k}{2\delta}} for the case of arbitrary number of experts kk

    Translational tilings by a polytope, with multiplicity

    Full text link
    We study the problem of covering R^d by overlapping translates of a convex body P, such that almost every point of R^d is covered exactly k times. Such a covering of Euclidean space by translations is called a k-tiling. The investigation of tilings (i.e. 1-tilings in this context) by translations began with the work of Fedorov and Minkowski. Here we extend the investigations of Minkowski to k-tilings by proving that if a convex body k-tiles R^d by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski's conditions for 1-tiling polytopes. Conversely, in the case that P is a rational polytope, we also prove that if P is centrally symmetric and has centrally symmetric facets, then P must k-tile R^d for some positive integer k
    corecore